
ARTICLE OPEN

The relationship between striatal dopamine and anterior
cingulate glutamate in first episode psychosis changes with
antipsychotic treatment
Sameer Jauhar 1,11✉, Robert A. McCutcheon 2,3,4,11, Mattia Veronese 5, Faith Borgan 4, Matthew Nour6, Maria Rogdaki 4,
Fiona Pepper4, James M. Stone 7, Alice Egerton 4, George Vamvakas8, Federico Turkheimer 5, Philip K. McGuire 2 and
Oliver D. Howes4,9,10

© The Author(s) 2023

The neuromodulator dopamine and excitatory neurotransmitter glutamate have both been implicated in the pathogenesis of
psychosis, and dopamine antagonists remain the predominant treatment for psychotic disorders. To date no study has measured
the effect of antipsychotics on both of these indices together, in the same population of people with psychosis. Striatal dopamine
synthesis capacity (Kicer) and anterior cingulate glutamate were measured using 18F-DOPA positron emission tomography and
proton magnetic resonance spectroscopy respectively, before and after at least 5 weeks’ naturalistic antipsychotic treatment in
people with first episode psychosis (n= 18) and matched healthy controls (n= 20). The relationship between both measures at
baseline and follow-up, and the change in this relationship was analyzed using a mixed linear model. Neither anterior cingulate
glutamate concentrations (p= 0.75) nor striatal Kicer (p= 0.79) showed significant change following antipsychotic treatment. The
change in relationship between whole striatal Kicer and anterior cingulate glutamate, however, was statistically significant
(p= 0.017). This was reflected in a significant difference in relationship between both measures for patients and controls at baseline
(t= 2.1, p= 0.04), that was not present at follow-up (t= 0.06, p= 0.96). Although we did not find any effect of antipsychotic
treatment on absolute measures of dopamine synthesis capacity and anterior cingulate glutamate, the relationship between
anterior cingluate glutamate and striatal dopamine synthesis capacity did change, suggesting that antipsychotic treatment affects
the relationship between glutamate and dopamine.
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INTRODUCTION
The dopamine hypothesis of psychosis remains one of the
predominant biological theories within psychiatry [1–4], and one
central strand is the clinical efficacy of dopamine D2 antagonists
[5–8]. Dopamine interactions with other neurotransmitter systems
have been implicated in psychosis, these including GABA [9],
serotonin [10] and the endocannabinoid system [11], though the
majority of literature has examined the excitatory neurotransmit-
ter, glutamate [12].
Pre-clinical models show interactions between the dopamine

and glutamate systems which could contribute to the actions of
antipsychotics [12]. Microdialysis experiments show dopamine
antagonists cause an acute increase in extracellular dopamine,
which reverts to baseline levels upon chronic treatment [13].
Rodent spectroscopy suggests effects of antipsychotics on frontal
cortex glutamate, with olanzapine and clozapine decreasing this,
though no change was seen with aripiprazole, haloperidol or

risperidone [14]. Moreover, drug challenge studies have demon-
strated targeting one system may have reciprocal effects, for
example, acute ketamine increasing cortical, striatal and nucleus
accumbens dopamine in-vivo [15].
Striatal dopamine synthesis capacity (Kicer) can be measured in-

vivo using positron emission tomography, and cortical glutamate
can be measured using proton magnetic resonance spectroscopy
(MRS). Effects on separate components of the dopamine and
glutamate systems have been examined in few in-vivo studies [16]
but not together in the same population. One study showed a
decrease in Kicer with sub-chronic haloperidol in 9 people with
schizophrenia free of antipsychotic medication [17], whilst another
found no difference in whole striatal Kicer in 17 people with first
episode psychosis, initially not taking antipsychotic medication,
who were then treated naturalistically with second generation
antipsychotics [18]. A systematic review of in-vivo MRS studies
found a small decrease in Glx (glutamate + glutamine) in some
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brain regions following antipsychotic treatment [19], another
study showing reduction in anterior cingulate cortex (ACC)
glutamate in people with first episode schizophrenia [20].
Conversely, a recent study in 61 people with schizophrenia failed
to show any change in ACC or hippocampal glutamate after
6 weeks' risperidone treatment [21].
In-vivo examination of both systems in the same population has

been limited to two cross-sectional studies. A study in healthy
volunteers reported a direct relationship between medial pre-
frontal cortex glutamate and striatal dopamine synthesis capacity
[22]. While in people with first episode psychosis, we reported an
inverse correlation between ACC glutamate and striatal Kicer [23].
We are unaware of studies examining effects of antipsychotics on
both systems in the same people, which is necessary if one wishes
to examine interactions between both systems.
In the current study we obtained measures of both anterior

cingulate glutamate concentrations, and striatal dopamine synth-
esis capacity, before and after treatment with antipsychotics, in
the same cohort of individuals with first episode psychosis. We
hypothesized no overall within-subject change in Kicer or
glutamate, instead predicting that antipsychotics would produce
more subtle circuit-level changes in both neurotransmitters,
reflected in a change in the relationship between the two
measure pre- and post-treatment.

METHODS AND MATERIALS
Ethical approval was given by East of England-Cambridge East Ethics
Committee, and the Administration of Radioactive Substances Advisory
Committee (ARSAC). All participants provided informed written consent.
The patient group had scans at baseline and after antipsychotic treatment,
the healthy control sample having scans solely at baseline.

Participants
Patients (N= 18) were recruited from London first episode psychosis (FEP)
services and were required to be experiencing their first episode of
psychotic illness, antipsychotic naïve, free of antipsychotics for >6 weeks or
minimally treated with antipsychotics for <2 weeks. For inclusion, subjects
required a diagnosis of a psychotic disorder meeting International
Classification of Disease-10 (ICD 10) criteria [24], and experience psychotic
symptoms, defined as at least moderate severity on one or more of the
delusion (P1), hallucination (P3), and persecution (P6) items on the Positive
and Negative Syndrome Scale (PANSS), consistent with previous studies
[24, 25]. Diagnosis was confirmed by a study psychiatrist (SJ), using a
structured instrument (Mini-international Neuropsychiatric Interview
(MINI)) [26]. Inclusion criteria required people with psychosis to be
antipsychotic naïve, antipsychotic-free for at least 6 weeks, or “minimally
treated” (receiving antipsychotic medication for 2 weeks or less).
Healthy control subjects (N= 20) were recruited from the same

geographical area as the patient group. Inclusion criteria for controls
were: no personal history of psychiatric illness (assessed using the MINI)
and no concurrent psychotropic medication (through self-report).
Exclusion criteria for all participants were: history of significant head

trauma (any loss of consciousness due to head injury), dependence on
illicit substances (defined using the MINI), medical co-morbidity (other than
minor illnesses), family history of psychosis and contra-indications to
scanning (such as pregnancy). Nicotine and alcohol use were permitted,
though specific restrictions were placed on the day of PET.

Antipsychotic treatment
All antipsychotic doses were required to be within therapeutic range,
defined in the Maudsley Prescribing Guidelines [27]. Use of other
psychotropic medication (such as antidepressants and benzodiazepines)
was permitted. To assess concordance we used a multisource approach,
requiring evidence of adequate adherence on at least two of the following:
antipsychotic plasma levels, pharmacy and electronic medical records, and
self-report from the patient and an independent source (family member/
caregiver or health care professional). Adequate concordance was defined
as taking a minimum of 80% of prescribed doses, in line with consensus
recommendations [28]. To measure antipsychotic exposure, we deter-
mined chlorpromazine-equivalent dose years, as described by Andreasen

et al. [29]. In the cases of lurasidone and amisulpride, we used the method
described by Leucht et al. [30], using data from the Maudsley Prescribing
Guidelines [27], because these are not covered in Andreasen et al.

Clinical measures
Symptoms were measured using the positive and negative syndrome scale
(PANSS), with raters blinded to imaging results. Age, gender and ethnicity
(white/non-white) were also recorded.

PET imaging acquisition and analysis
All participants were asked not to eat or drink (except water), and refrain
from alcohol for 12 h prior to scan. Imaging data were obtained on a
Siemens Biograph 6 HiRez PET scanner (Siemens, Erlangen, Germany) in
three-dimensional mode. One hour before scan, participants received
400mg entacapone, a peripheral catechol-o-methyl-transferase inhibitor
to prevent formation of radiolabeled metabolites that may cross the
blood–brain barrier, and 150mg carbidopa, a peripheral aromatic acid
decarboxylase inhibitor to increase the PET imaging signal. Participants
were positioned in the scanner with the orbitomeatal line parallel to the
transaxial plane of the tomograph. Head position was marked, monitored
and movement minimized using a head strap. After acquiring a CT scan for
attenuation correction, ~150 MBq 18F-DOPA was administered by bolus
intravenous injection, 30 s after the start of PET imaging. PET data were
acquired in 32 frames of increasing duration over the 95-min scan (frame
intervals: 8 × 15 s, 3 × 60 s, 5 × 120 s, 16 × 300 s).
Correction for head movement during scan was performed by employ-

ing a mutual information algorithm, described in prior publications [30, 31].
SPM 8 [31, 32] was used to automatically normalize a tracer-specific
18F-DOPA template [32, 33] together with the striatal brain atlas as defined
by Martinez et al. [33, 34]. The primary outcome measure, the striatal influx
constant for whole striatum with cerebellum as the reference region, Kicer

(1/min), was calculated using the Patlak-Gjedde graphical approach
adapted for a reference tissue input function, used in prior studies by
our group [24, 25, 30, 31, 34, 35].

MRS acquisition
All scans were acquired on a General Electric (Milwaukee, Wisconsin,
USA) Signa
HDxt 3 Tesla MRI scanner. Internal localizer scans were used to

determine the anterior commissure-posterior commissure line and inter-
hemispheric angle. For the voxel placements, 3D coronal inversion
recovery prepared spoiled gradient echo (IR-SPGR) scans were acquired,
followed by auto pre-scans for optimization of water suppression and
shimming. A T1 weighted structural scan was also obtained and was used
for subsequent segmentation and CSF correction. 1H-MRS spectra were
acquired for the anterior cingulate region-of-interest (right-left
20mm× anterior-posterior 20mm x superior-inferior 20 mm). The anterior
cingulate cortex voxel was prescribed from the midline sagittal localizer,
with the centre of the 20 × 20 × 20mm voxel placed 13mm above the
genu of corpus callosum perpendicular to the AC–PC line to minimize
inclusion of white matter and cerebral spinal fluid (CSF). 1H-MRS spectra
(Point RESolves Spectroscopy (PRESS), TE= 30ms, TR= 2 s) were obtained
through the PROton Brain Examination (PROBE) sequence by GE, which
includes water suppression.

MRS analysis
Water-scaled metabolites, using a standard basis set of 16 metabolites
(L-alanine, aspartate, creatine, phosphocreatine, GABA, glucose, Gln,
glutamate, glycerophosphocholine, glycine, myo-inositol, L-lactate, N-
acetylaspartate, N-acetylaspartylglutamate, phosphocholine, and taur-
ine), provided with LCModel and generated using same field strength
(3 Tesla), localization sequence (PRESS), and echo time (30 msec)/ The
acquired data were analyzed using LC-model 6.3-I0 [36] and we
specifically estimated levels of glutamate, in keeping with our previous
study, which highlighted the relationship between whole striatal
18F-DOPA PET and anterior cingulate Glutamate, in people with first
episode psychosis [23].
Spectra were visually inspected and metabolite analyses were restricted

to spectra with line width (full-width at half-maximum; FWHM) ≤ 0.1 ppm,
Cramér-Rao lower bounds (CRLB) for glutamate ≤ 20%, signal to noise
ratio ≥ 5. Corrections were applied to account for relative distribution of
cerebrospinal fluid within anterior cingulate. In-house scripts were used to
identify relative distribution of white, grey matter and cerebrospinal fluid
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in the voxel prescribed to the anterior cingulate. The following correction
was subsequently applied in order to correct for CSF content within the
voxel; where M raw metabolite value, WM white matter and GM grey
matter:

Mcorr ¼ M � ðWMþ GM � 1:22þ CSF � 1:55Þ=ðWMþ GMÞ

Statistical analysis
Analyses were performed using Stata version 13 [37] and R version 3.3.2
[38]. Linear mixed effect models were constructed to determine effects of
treatment on dopamine synthesis capacity, glutamate concentration, and
the relationship between them.
Our primary analysis investigated whether the association between

striatal Kicer and anterior cingulate glutamate observed in the patient
group at baseline changed following antipsychotic treatment. In this
analysis Kicer was the dependent variable. Glutamate, timepoint (baseline
vs follow-up), and a glutamate * time point interaction were included as
fixed effects, with a random participant-level effect. The effect of treatment
on glutamate and dopamine individually was examined with a linear

mixed model in which the neurochemical measure in question was the
dependent variable, time point was a fixed effect, with a random
participant-level effect.
Secondary analyses investigated whether striatal Kicer or anterior

cingulate glutamate changed individually. In these analyses the neuro-
chemical measure was the dependent variable, while time was included as
a fixed effect, with a random participant-level effect. In addition dopamine-
glutamate association in patients was compared with the association
observed in controls, by fitting a linear model with Kicer as the dependent
variable, and glutamate, group and glutamate* group interaction as
independent variables. This model was fitted separately for baseline and
follow-up scans for the patient group

RESULTS
Study participants
20 healthy controls received baseline scans, while 18 people with
first episode psychosis (FEP) received both baseline and follow-up
scans and clinical assessment. Demographic details are given in
Table 1. There were no significant differences between patients
and controls in age, gender or ethnicity.
There was no statistical difference between groups, in terms of

illicit drug use (self-report) or urine drug screen, nicotine or alcohl
use (self-report).
At baseline the mean total PANSS in the patient group was 73.8

(SD 16.0) which reduced at a statistically significant level (p < 0.01)
to 52.9 (SD 19.6) following antipsychotic treatment.
Time between PET and MRS was as follows. Baseline; median

3.5 days (IQR= 5.75)
Follow-up; median 5.5 days (IQR 17.5 days).
At baseline, ten patients were antipsychotic naïve, five were

medication free and three were minimally treated. All patients
received a minimum of 4 weeks’ antipsychotic treatment between
baseline and follow-up scans.

Psychotropic medication
One patient was using Sertraline at baseline, and one taking
benzodiazepines at follow-up.
Psychotropic medication during the study is given in Table 2.
The median chlorpromazine dose years of antipsychotic

treatment was 0.32 (IQR 0.17).

Table 1. Demographic details.

Controls (N= 20) Patients(N= 18) P-value

Age 23.5 (±3.4) 25.0 (±3.2) 0.17

Sex (%male) 13 (65.0%) 14 (77.8%) 0.61

Ethnicity (% white) 13 (70%) 8 (44%) 0.34

Medication status N/A

Antipsychotic Naive 10

Antipsychotic Free 5

Minimally Treated 3 (risperidone 2mg, n= 1; amisulpride
200mg, n= 1, amisulpride 300mg n= 1)

Baseline Followup P-value

PANSS Positive 20.3(±6.7) 12.9 (±5.8) <0.001

PANSS Negative 15.8(±5.0) 12.4 (±5.9) 0.04

PANSS General 37.1(±8.1) 27.6 (±9.7) <0.001

PANSS Total 73.8(±16.0) 52.9 (±19.6) 0.001

Kicer *10-3 (min-1) 12.9 (±1.2) 12.9(±1.1) 12.9 (±1.0) 0.55

Acc Glu (Institutional Units) 14.1 (±2.1) 13.7(2.2) 13.8 (±1.6) 0.75

Median time between PET and MRS at baseline 4 days (IQR= 8)

Median time between PET and MRS at follow-up 6 days (IQR= 18)

Time between 18F-DOPA scans 68 days (IQR= 46)

Time between MRS scans 77 days (IQR= 111)

Table 2. Psychotropic medication.

Psychotropic medication

Amisulpride, N= 7

Amisulpride+ Aripiprazole N= 1N= 1

Amisulpride, Quetiapine N= 1

Amisulpride, Olanzapine N= 1

Aripiprazole, N= 1

Lurasidone N= 1

Olanzapine, N= 1

Paliperidone N= 1

Quetiapine, N= 1

Quetiapine+ Sertraline, N= 1

Risperidone, Aripiprazole, N= 1

Risperidone, Sodium Valproate N= 1

Risperidone, N= 1
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Change in dopamine and glutamate measures
As reported in a sub-sample of these patients [18], there was no
significant change in whole striatal Kicer with antipsychotic
treatment (coefficient= 1.5*10−4, SE= 2.4*10−4, p= 0.53) (see
Fig. 1). There was no significant change in anterior cingulate
glutamate concentrations (coefficient= 0.20, SE= 0.60, p= 0.74)
(see Fig. 1). MRS quality metrics and checklist are given in Tables 3
and 4.
There was a significant interaction between glutamate and time

(coefficient= 3.7*10−4, SE= 1.5*10−4, p= 0.018), reflecting a

negative association between Kicer and ACC glutamate at baseline,
that was not present at follow-up (see Fig. 2). This finding is also
illustrated by the fact that at baseline there was a significant
interaction between patients and controls in the dopamine-
glutamate relationship (estimate=−3.0*10−4, SE= 1.7*10−4,
p= 0.03, previously reported [23]). In contrast, where data
obtained in patients at follow-up was compared to the same
data obtained at the single timepoint in controls there was no
difference between patients and controls in this dopamine-
glutamate relationship (estimate=−1.7*10−5, SE= 2.1*10−4,

Fig. 1 Change in individual dopamine and glutamate measures. Neither anterior cingulate glutamate concentrations (p= 0.53) nor striatal
18F-DOPA Kicer (p= 0.74) showed a significant change following antipsychotic treatment.

Table 3. MRS Quality Metrics.

Baseline Mean Baseline SD Follow-up Mean Follow-up SD Control Mean Control SD P-values

Spectra quality measures

FWHM 0.03938889 0.007204075 0.03729412 0.007703609 0.03885 0.006968161 0.6792491

SN 19.27777778 4.944462804 19.41176471 4.258210063 18.10000 5.035662294 0.6503201

CRLB 7.16666667 1.917412472 6.94117647 1.144038255 7.45000 1.848897253 0.6579231

Segmentation measures

CSF 0.2263711 0.04606015 0.2312759 0.04356772 0.22975 0.03986540 0.9418366

GM 0.6640037 0.04044277 0.6604720 0.03603106 0.67015 0.02926517 0.7000233

WM 0.1094820 0.03422825 0.1080831 0.03267300 0.10000 0.02981346 0.6190083

FWHM Full Width Half Maximum
SN Signal; noise ratio
CRLB Cramér Rao Lower Bounds
CSF cerebrospinal fluid
The p-value reflects the results of an ANOVA between the three sets of measurements.
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Table 4. MRS checklist.

MRS checklist

a. Field strength [T]

3T

b. Manufacturer

General Electric

c. Model (software version if available)

GE Signa HDx running software version 14.0_M5_0737.f

d. RF coils: nuclei (transmit/ receive), number of channels, type, body part

8-channel receive only head coil by Invivo

e. Additional hardware

None

2. Acquisition

a. Pulse sequence

PRESS

b. Volume of Interest (VOI) locations

Anterior cingulate cortex

c. Nominal VOI size [cm3, mm3]

20 × 20 × 20mm

d. Repetition time (TR), Echo Time (TE) [ms, s]

TR= 3000ms;

TE= 30ms

e. Total number of excitations or acquisitions per spectrum

96, with an additional 16 with water suppression off

In time series for kinetic studies; not relevant

Number of Averaged spectra (NA) per time-point

Averaging method (e.g. block-wise or moving average)

Total number of spectra (acquired / in time-series)

128 averages

f. Additional sequence parameters

(spectral width in Hz, number of spectral points, frequency offsets)

If STEAM:, Mixing Time (TM)

If MRSI: 2D or 3D, FOV in all directions, matrix size, acceleration factors, sampling method

PRESS, TR= 3000ms, TE= 30ms, #points= 4096, spectral width= 5 kHz, frequency offset of PRESS pulses= -2 ppm (ie applied at 2.7 ppm)

g. Water suppression method

CHESS

h. Shimming method, reference peak, and thresholds for “acceptance of shim” chosen

automated linear shimming using B0 maps.

i. Triggering or motion correction method

(respiratory, peripheral, cardiac triggering, incl. device used and delays)

None

3. Data analysis methods and outputs

a. Analysis software

LCModel version 6.3–10

b. Processing steps deviating from quoted reference or product

None

c. Output measure

(e.g. absolute concentration, institutional units, ratio) Processing steps deviating from quoted reference or product

Metabolite concentration in institutional units, corrected for voxel tissue fractions

d. Quantification references and assumptions, fitting model assumptions

LCModel basis set

4. Data quality

a. Reported variables

S. Jauhar et al.
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p= 0.93, see Fig. 3). The interaction between Glx and time was not
significant (coefficient= 1.8*10−4, SE= 1.0*10−4, p= 0.077).

DISCUSSION
We observed normalization of the relationship between striatal
Kicer and anterior cingulate glutamate in people with first episode
psychosis following antipsychotic treatment. This change in
relationship was significant, and the follow-up dopamine-gluta-
mate relationship was similar to that observed in healthy controls
at baseline.
To the best of our knowledge this is the first study to examine

relationships between striatal 18F-DOPA Kicer and anterior
cingulate glutamate before and after antipsychotic treatment.
Strengths of the study include the fact that the population under
study consisted of patients with a first episode psychosis, and
were predominantly antipsychotic free or naïve at baseline.
Limitations include a modest sample size and naturalistic
antipsychotic treatment. However, all antipsychotics were pre-
scribed at valid treatment dose, and changes seen in PANSS
indicated adequate clinical response in the majority of patients.
The lack of placebo group means it is impossible to infer symptom
change being wholly due to antipsychotic treatment,. A further
weakness is the lack of follow-up data in the control group. Prior
studies have examined changes in each of these measures
separately in similar populations (first episode psychosis/schizo-
phrenia) [17–19, 21], though both measures have not been

examined together in the same population. Prior studies show
conflicting results, with decreases in anterior cingulate glutamate
following antipsychotic treatment suggested in a systematic
review of small studies [19] and a relatively large sample
(n= 46) [20], though no change in a relatively large study
(n= 45) [21]. A decrease was seen in 18F-DOPA Ki in a sample of 9
people treated with sub-chronic haloperidol [17], though no
change in a larger sample examined by our group, a subsample of
which was examined here [18].
It is important to acknowledge the test/re-test reliability of both

imaging measures. Regarding 18F-DOPA PET, inter-rater reliability
was measured in 8 healthy controls, with an interclass correlation
of 0.843 for Whole Striatum, and mean time between scans was
(Mean ± SD 113.6+ /-16 weeks). The reliability of MRS Glu at 3 T
has been measured in posterior cingulate cortex (PCC), using
PRESS sequence, in 18 individuals (range 1 day–1 week), ICC= 0.8
[39].
As acknowledged [23], the glutamate signal at 3 T includes a

contribution from Glutamnine (10–15%), and there is an inability
to differentiate intracellular and extracellular glutamate concen-
trations. Similarly, our measure of dopamine synthesis capacity,
aromatic acid decarboxylase (AADC) is not the rate-limiting enyme
for dopamine synthesis, though remains the best tracer available,
in terms of reliability and validity [25].
By applying CRLB threshold (>20%) as opposed to an absolute

threshold, across all subjects, it is conceivable that if concentra-
tions are lower in one group or time point, this group would have

Table 4. continued

MRS checklist

(SNR, Linewidth (with reference peaks)) See Table 3.

SNR ≥ 5

Spectra were visually inspected and metabolite analyses were restricted to spectra with line width (full-width at half-maximum; FWHM) ≤ 0.1 ppm

b. Data exclusion criteria

Metabolite CRLB > 20%

Cramér-Rao lower bounds (CRLB) for glutamate > 20%, signal to noise ratio < 5.

c. Quality measures of postprocessing Model fitting (eg. CRLB, goodness of fit, SD of residual)

CRLB See Supplementary Material

d. Sample spectrum

See Fig. 1, Supplementary Material

Fig. 2 Dopamine-glutamate associations change following treatment. The relationship between 18F-DOPA Kicer and glutamate in patients at
baseline (red) is significantly different from that observed following antipsychotic treatment (blue) (p= 0.02).
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higher CRLBs [40]. However, we found no significant difference in
concentrations at different time points, and therefore this effect is
unlikely.
By examining the relationship between striatal 18F-DOPA Kicer

and anterior cingulate glutamate, we suggest antipsychotic
medication may exert effects on the relationship between these
two measures. Specifically, the change in relationship is towards
that seen in controls.
One model of psychosis pathoetiology proposes that dysregu-

lation of cortical glutamatergic neurons [4, 41], through impaired
GABA-ergic inhibition, leads to disinhibition of excitatory projec-
tions to dopamine neuron cell bodies in the midbrain, to stimulate
dopamine neuron firing [41]. There is meta-analytic evidence that
antipsychotics may reduce cortical glutamate levels in-vivo, in
people with schizophrenia [42], although measures used, Mag-
netic Resonance Spectroscopy (MRS), are of total tissue glutamate
rather than synaptic glutamate, it remains unclear to what degree
this reflect glutamatergic neuronal activity. Notwithstanding, this
could account for an uncoupling of the relationship between
cortical glutamate and subcortical dopamine seen in our sample.
However, it should be recognized that the current study does not
show causality, and it remains possible that other effects underlie
the alterations we report. In-vivo studies utilizing pharmacological
manipulation of cortical glutamatergic activity are needed to
disentangle these possibilities [43], as well as pre-clinical models. It
should also be recognized that substance misuse, an aetiological
factor in psychosis [44], may have similar effects on these systems,
including the effects of cannabis use, decreasing cortical
glutamate, seen in an MRS study of people with early psychosis
[45]

Future directions
This study requires replication in a larger sample, ideally with a
control group scanned at both time points. Focusing on specific
patient populations, eg those with lower (relative) dopamine
synthesis capacity, may help delineate the interaction with cortical
glutamate better, alongside better field strength MRS measures

(7 T). It will also be of value to see how the association highlighted
in the current study relates to other interaction effects observed
using multimodal imaging [46–49], and any identified circuits
could be further examined using pre-clinical models.

CONCLUSIONS
We demonstrated a change in the relationship between measures
of striatal dopamine synthesis capacity and anterior cingulate
glutamate in first episode psychosis after antipsychotic treatment,
the subsequent relationship being comparable to that seen in
healthy controls.
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